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I.  Introduction 
 
 In the discussion of the transient response of the RLC circuit to step voltages, we have 
ignored the time required for the signal to propagate to the various circuit elements.  This neglect 
is justified for those cases where the time scale involved in the circuit is much greater than that 
involved in the propagation of signals along the wires.  This neglect is not possible if the 
propagation times times are of the order of nanoseconds ( 910−  s), since the maximum velocity 
with which a signal can be propagated is that of light, 30 cm per ns. 
 
 Although we must allow for the complications of these time delays in ordinary circuits at 
radio frequencies, it is difficult to treat such a general system theoretically.  We will, however, 
try to understand the propagation of signals in a simple circuit: a uniform two-conductor 
transmission line.  The propagation of signals in these lines is described by two parameters: the 
propagation speed and the characteristic impedance.  In turn these two parameters are related to 
the capacitance and inductance per unit length of the line. 
 
 We will consider only the special case of a lossless line, for which the series resistance 
and the shunt conductance are negligible.  In this approximation the signal is transmitted without 
attenuation, although distortion can still result from variation of the dielectric constant with 
frequency.  This approximaton is useful for short lines and cables used in transmitting signals no 
more than a few meters.  In transmission lines more than 30 meters long, the distortion and 
attenuation of signals in the line are sometimes a major problem and must be considered in 
detail. These effects are discussed briefly in a later section. 
 
 
II.  The differential equations for an ideal line 
 
 A uniform ideal line can be described by its series inductance L per unit length and its 
shunt capacitance C per unit length.  If such a line is connected to a voltage generator, currents 
will flow along the line through the series inductance, and the currents will charge the shunt 
capacitance.  Differential equations for the voltage V and current i at a point x on the line are 
derived as follows.  (Note that V and i are functions of  both x and t). 
 
 The voltage dV across an element of length dx (see Fig. 1) is determined by the series 
inductance Ldx and is given by 
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  ( ) didV L dx
dt

= − , or dV diL
dx dt

= − . 

 

 
 

Fig. 1  Voltage and current in an ideal line. 
 
Since V and i are functions of the two variables x and t, this equation is expressed in terms of 
partial derivatives, 
 

  i 
x t
V L∂ ∂

∂ ∂
= − .       (1) 

 
Similarly, the current is reduced by an amount di in an element of length dx because of the 
charging of the shunt capacitance Cdx, so that 
 

   ( ) dVdi C dx
dt

= − , or di dVC
dx dt

= −   

 
In terms of partial derivatives 
 

  i VC
x t

∂ ∂= −
∂ ∂

.       (2) 

 
Eqs. 1 and 2 can be combined to obtain wave equations for V and i.  Differentiate Eq. 1 with 
respect to x, we obtain 
 

  
2 2

2

V iL
t xx

∂ ∂= −
∂ ∂∂

 ,      (3) 
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and differentiating Eq. 2 with respect to t, we obtain 
 

  
2 2

2

i VC
x t t

∂ ∂= −
∂ ∂ ∂

.       (4) 

 
Since we are dealing with differentials of well behaved functions, 
 

  
2 2

t x x t
∂ ∂=

∂ ∂ ∂ ∂
, 

 
and Eqs. 3 and 4  combine to give the wave equation for V, 
 

  
2 2

2 2

V VLC
x t

∂ ∂=
∂ ∂

.       (5) 

 
Similarly, by differentiating Eq. 1 with respect to t and Eq. 2 with respect to x, we obtain a wave 
equation for i, 
 

  
2 2

2 2

i iLC
x t

∂ ∂=
∂ ∂

.       (6) 

 
 The two wave equations Eq. 5 and Eq. 6 correspond to current and voltage waves with a 
propagation speed u of 
 

  1u
LC

= .        (7) 

 
 
III.  Charcteristic impedance 
 

 Consider traveling wave solutions for V and i in the +x direction at a speed  1u
LC

= . 

These waves must have the general mathematical forms 
 
  ( ) ( ),V x t f x u t= −  and ( ) ( ),i x t g x u t= − . 
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We will now show that these waves have the same shape, and that the voltage wave is 
proportional to the current wave. 
 
From Eq. 1 we have 
 

  f gL
x t

∂ ∂= −
∂ ∂

.       (8) 

 

Let w x ut= − ,  so dff
dw

′ =  and  dgg
dw

′ = . 

Then 

  gf L
t

∂′= −
∂

 

and 

  'g ug
t

∂ = −
∂

. 

 
Therefore, from Eq. 8, 
 

  1 Lf Lug L g g
CLC

′ ′ ′ ′= − = = , or Lf g
C

′ ′= .  (9) 

 
When integrated, this equation gives 
 

  constantLf g
C

= + . 

 
 Any DC voltages and currents that may be on the cable are usually ignored in treatments 
of transmission lines; therefore the constant of integration in Eq. 9 is set to zero. Hence 
 

  Lf g
C

=  

 
and, therefore, 
 

  LV i
C

=         (10) 
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Thus the voltage and current waves have the same shape.  The ratio V i  is called the 
characteristic impedance kZ  of the line.  We have now shown that 

 

  k
V LZ
i C

= = .       (11) 

 
Note that kZ  is real and has the units of resistance. 

 
 To summarize, a voltage–current wave can travel toward +x with the velocity 

1 LCu = .  The voltage and current in this incident wave are related as i k iV Z i= .  A reflected 

wave pulse can travel toward -x with the velocity 1 LCu = − .  The voltage and current in this 
wave are related as r k rV Z i= − . 

 
 At any point on the transmission line the voltage V and the current i are the sum of the 
voltages and currents in the positive and negative going, i.e. incident and reflected, waves. Thus 
 
  r iV V V= + ,  and 

 

  i r
r i

k k

V V
i i i

Z Z
= + = − , 

or 
 
  r iV V V+ = ,  and 

           (12) 
  i r kV V Z i− = . 

 
These two equations are very important for understanding the propagation of waves on 
transmission lines.  Useful expressions for the propagation speed and characteristic impedance of 
parallel conductor and coaxial conductor transmission lines are given in the Appendix I. 
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IV.  Reflection of pulses at resistive loads 
 
 Eqs. 12 are useful for determining the kind of reflection that will occur from the end of a 
transmission line terminated in a resistive load. Suppose a square pulse of amplitude oV  is 

traveling toward +x as shown in Fig 2. 
     

  
 

Figure 2 
 
At the end of the line it encounters a load resistance LR . Consequently at the end of the line V 

and i in Eq. 12 must be related as 
 

  L
V R
i

= . 

 
The incident wave generates a reflected wave at the load for which 
 

  i r L

i r k k

V V RV
V V Z i Z

+
= =

−
.       (13) 

 
Solving Eq. 13  for rV  gives 

 

  L k
r i

L k

R Z
V V

R Z
−

=
+

.       (14) 

 
If the incident pulse is a square pulse of magnitude i oV V= , and the line is left open (or 
disconnected) so that LR  = ∞ , Eq. 14 gives 

 
  r iV V= , or r oV V= . (open line)      (15) 

 
Thus a pulse of equal magnitude is reflected back down the line as shown in Figure 3a.  On the 
other hand if LR  = 0, a shorted line, Eq. 14 gives  
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  r iV V= − , or r oV V= − . (shorted line)    (16) 

 

 
 

Figure 3 
 
This reflected pulse will have the same magnitude as the incident pulse, but it will be inverted as 
shown in Figure 3 (b). 
 
 For a pulse traveling on a line toward +x the voltage-current relations are  i i kV i Z= . 
Consequently a load resistance L kR Z=  should behave like a continuation of the line and no 
pulse should be reflected.  If L kR Z=  in Eq. 14, we obtain 0rV = .  Connecting a resistance 

L kR Z=  to a line is called terminating the line.  Other values of LR  give various sizes of 

reflected pulses that can be computed from Eq. 14. 
 
 Suppose an oscilloscope is connected to the line near the pulse generator as in Figure 4. 
On your pulse generator a trigger pulse is available that will start the sweep of the oscilloscope 
when the pulse is generated. 
 
 As time goes on, your oscilloscope sweeps to the right as the pulse travels out on the line. 
Soon the leading edge of the pulse arrives at the oscilloscope and the trace jumps up and records 
it.  As the pulse passes, the oscilloscope records its shape. 
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 Notice from Fig. 5 that the trace as it appears in time on the oscilloscope (Fig 5) would 
be reversed from its appearance in space on the line (Fig 4).  The pulse travels out to the end of 
the line and is reflected.  Nothing happens back at the oscilloscope until the reflection arrives, 
leading edge first.  We have here assumed a shorted line so the reflected pulse is upside down.  
The oscilloscope trace records the incident and reflected pulses as shown in Fig 5.  Fig 5 is 
shown for one positive square pulse.  The sloping pulses shown in Figs 4 and 5 are used to 
clarify which are the leading and trailing edges. 
 

 
 

Figure 4 
 
 
 

 
 

Figure 5 
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V.  Thevenin equivalent circuit of a line 
 
 Suppose a voltage pulse iV  is incident on the end of a line with a resistance LR  connected 

to it.  A reflected pulse is generated at the load.  At the load Eqs. 12 may be written 
 
  i r LV V R i+ = , and i r kV V Z i− = . 

 
rV  can be eliminated from these equations, and the result can be solved for i. 

 

  2 i

L

Vi
R Z

=
+

. 

 
The current at the load is identical to what would be obtained from the equivalent circuit shown 
in Fig 6. 
   

 
Figure 6 

 
 Although this result was obtained on the basis of a resistance connected to the end of the 
line, the system is everywhere linear (i.e. currents proportional to voltages).  Therefore, 
Thevenin's theorem applies and the line will respond to any device connected to it as if it were an 
emf of twice the voltage of the incoming pulse, 2 iV , being fed through an impedance equal to 
the characteristic impedance of the line, kZ . This fact is very important.  A good many physicists 

really do work every day with transmission lines propagating high-speed pulses. 
 
 
VI.  More complicated circuits at the end of the line 
 
 Suppose a capacitor LC  is connected to the end of the line, which may be considered as 

its Thevenin equivalent circuit shown in Fig 7. 
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 Suppose a square pulse iV  high and iT  long is generated from the source and is incident 

on the capacitor. From your previous experience with transient analysis you can easily determine 
that the voltage appearing on the capacitor will vary as a function of time as shown in Fig 8. 
 

    
 

Figure 7 
 
 

 
 

Figure  8 
 
When Thevenin equivalent voltage 2 iV  is applied, the capacitor charges up exponentially with a 
time constant k LZ C .  When the voltage is removed, the capacitor discharges. 

 
 We now know the incident voltage, iV  and the voltage at the load, LV .  The first of Eqs. 
12 may be solved to find the reflected voltage, r L iV V V= − , generated at the load.  Fig 9a shows 
the incident square pulse iV .  Fig 9b shows the voltage LV .  Note that iV  is the actual input 
voltage of height iV , and not the Thevenin equivalent voltage 2 iV .  The voltage LV , however, 
does eventually rise to the Thevenin equivalent voltage 2 iV .  The reflected pulse is obtained by 
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subtracting iV  from LV  as has been done graphically in Fig 9c.  If this were observed with the 

oscilloscope setting of Fig 4, a trace like Fig 9d would result. 
 

 
 

Figure 9 
 
 Notice that the reflected pulse is first reflected upside down. This is because a capacitor 
acts like a short for rapid high frequency voltage changes. However, after a long time the 
reflected pulse becomes the same sign as the incident pulse. This is because the capacitor 
behaves like an open circuit for slow changes (DC). An inductor, on the other hand, opposes 
rapid changes in current and acts like an infinite impedance for rapid voltage changes or like a 
short for slow changes. An inductor on the line will reflect the same sign pulse to begin with and 
the opposite sign after some time.  The time constant for the inductor is kL Z .  With the 
inductance, L, in henries and the impedance kZ  in ohms, the time constant is in seconds. 

 
 The analysis of this section can be used to find the shape of the reflected pulse for any 
kind of circuit connected to the line. 
 
 
VII.  Exercises 
 
 Connect the circuit shown in Fig 10.  RG8U is the thick, stiff, large diameter cable.  It 
has a characteristic impedance kZ  = 50 Ω .  It is made of heavy copper wire and has small losses.  

Attach a BNC-T connector to the channel 1 of the Scope.  Connect the 50 Ω  OUTPUT of the 
Wavetek to one side of the BNC-T with a short piece of RG58U.  Use another short RG58U 
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cable to connect the other side of the BNC-T  to the 100’ long RG8U cable.  (It is inconvenient 
to have the heavy RG8U cable connected directly to the Scope.)  Connect the SYNC OUT of the 
Wavetek to external trigger of the oscilloscope.  The oscilloscope is a 1M Ω  input impedence, 
and it does not perturb the pulse which travels from the Wavetek down the long RG8U cable. 
 

 
Figure  10 

 
 Set the Scope trigger to external, + slope, DC Coupling.  Set the Wavetek to Fixed Duty 
Mode, positive unipolar pulse, 1 Volt peak amplitude,  pulse period to 1 µ s. and the duty cycle 

to 10 %.  Record these values.  Duty cycle is defined as the ratio of the on time of the pulse to 
the period of the pulse.  Note that the pulse period is the sum of  the pulse on time and pulse off 
time.  For a pulse period of 1.0 µ s and a pulse on time of 0.1 µ s, the factor cycle is 10%.  

 
 You should now see  pulses on the oscilloscope screen and their reflections.  Capture an 
image of the Scope display to document what you see.  In order to differentiate incident and 
reflected pulses, connect a shorted terminator (as in Fig 3) at the open end of the RG8U cable.  
You will observe that the  reflected pulses are inverted.  Capture another image of the Scope 
display for your notebook and report.  Once you are familiar with the reflections, disconnect the 
shorted terminator and leave that end of the RG8U  open.   
 
 

A. Speed of waves on RG8U and RG58U 
 

Measure the length of time it takes the pulse to traverse the RG8U cable from the Scope 
to the end of the cable and then to reflect back to the Scope.  (a) Using the given length of the 
RG8U, calculate the propagation speed on this cable.  (b) Express the propagation speed as a 
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fraction of the speed of light.  (c) Add 100' of RG58U (the spool of small cable).  Measure the 
time between incident and reflected pulses.  (d) Calculate the propagation speed of a pulse on 
RG58U.  (e) Compare the propagation speed on RG8U to the propagation speed on RG58U.  (f) 
Can you detect a small reflection from the connector between the cables? 
 
 Notice that the reflected pulse now has significantly rounded corners. This effect is due 
to losses in the cable which are larger at higher frequencies.  It would do little good to compare 
the D.C. resistance of the cable to the characteristic impedance, kZ , because at high frequencies 

the pulse travels only on the surface of the wires (skin effect) so the actual effective impedance 
is far from its DC value. This impedance also varies with frequency as does the dielectric 
constant of the insulation in the cable. All these effects distort the shape of the pulses for long 
transmission cables. A detailed analysis is given in standard handbooks. We will ignore such 
effects here, although in some later sections you should remember that theoretically sharp spikes 
in reflected pulses are likely to be somewhat rounded in reality. 
 
B. Resistive termination 
 
 Remove the RG58U cable spool and observe the positive reflected pulse from the open 
RG8U cable. Connect a shorting connector (green) to the end of the cable. As you have seen 
earlier, the reflected pulse will be inverted.  Document the observation with an image of the 
Scope display (if you have done some in part A above).  Remove the shorting connector.  
Connect the special cylindrical variable resistor.  This resistor is a very special high frequency 
carbon potentiometer.  Rotate the cylinder and note the variation in the reflection. Adjust for no 
reflection; remove the variable resistor and measure its resistance with a DMM.  This 
measurement determines the characteristic impedance of the cable.  Record this result.  Measure 
the reflected pulse heights for the fixed resistors in your kit, 0, 25, 50, 100, 150, and 180 ohms.  
Compare your results with Eq. 14.  Make a graph of the reflected pulse height and the pulse 
height calculated from Eq. 14. 
 
C. Thevenin’s theorem 
 
 Connect a BNC-T to the end of your RG8U cable in order to measure the voltage across 
components at the end of the cable.  Use appropriate interconnections between the coaxial 
connects on the cable, type U, to BNC.  One BNC connector in your kit has a lead soldered to 
the center conductor so you can observe the pulse arriving at the end of the cable with a high 
impedance scope probe (Fig 11).  Refer to the Appendix II for proper adjustment of the probe.  
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This adjustment can be crucial for valid measurements.  Remember to set the proper probe 
attenuation ratio on the scope.  Record the pulse observed at the end of the cable.  Compare the 
amplitude of the pulse at the open end of the cable (receiving end) to the amplitude of the pulse 
at the end of the cable connected to the Wavetek (sending end). This procedure determines the 
open circuit voltage of the Thevenin equivalent circuit.    Verify that the open circuit voltage is 
2 iV . 

 
 Terminate your line with LR  = 50 Ω .  Measure the voltage at the load.  Calculate the 

Thevenin equivalent series resistance of the cable.  Verify that it is 50 Ω . 
 
 Repeat with the above procedure with another of the fixed resistors in your kit.  Compare 
your measured voltage with what would be calculated from the circuit shown in Fig. 6. 
 

  
Figure 11 

 
D. Capacitance at end of the line 
 
 Connect the capacitor in your kit to the end of the line. (The capacitor is merely in series 
inside its aluminum container. To connect it to ground you must also connect the shorting stub to 
the end). Record the incident and reflected voltage pulses at the sending end, and the voltage 
pulse at the end of the line itself with images of Scope display.  Note the voltage and time scales 
of the Scope.  Compare your observations to Fig. 8 and Fig 9.  Measure the rise and fall times of 
the pulse at the load. The Scope can make this measurement.  By convention the rise and fall 
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time measurement is the time difference between the 90% and 10% maximum height of the 
pulse.  The 10% and 90% maximum voltages are indicated by the horizontal dashed lines in the 
oscilloscope display during the rise and fall time measurements as shown in Figure 12 below.  
(This is the same wave form as in Figure 8.)  Here the incident pulse, a unipolar square wave, is 
long enough in duration for the signal across the capacitor to rise to its maximum 2 iV  .  (If the 

incident pulse were shorter, the capacitor would begin to discharge before the signal reached 
2 iV .)  Then the measured rise time 2.20rise k LZ Cτ = .  The factor 2.20 is equal ln 9.  The fall time 
is 2.20fall k LZ Cτ = .  The signal discharges to 0 V, before the next incident pulse.  

 

 
Figure 12 

 
Find rise and fall time measurements in the voltage measurement menu.  Determine the value of 
the capacitance from the rise and fall time measurements.  Compare the measured value with the 
value stamped on the capacitor. 
 
E. Inductor at the end of the line 
 
 Repeat part D with an inductor.  Record the incident and reflected voltage pulses, and the 
voltage pulse at the end of the line itself with images of Scope display.  Note the voltage and 
time scales of the Scope.  Make a version of Fig. 8 for an inductor.  Measure the rise and fall 
times of the pulse at the load.  Determine the value of the inductance from the rise and fall time 
measurements.  Compare the measured value with the value stamped on the inductor. 
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F. LC Circuit 
 
 Connect your capacitor and inductor in series at the end of the line. Record the incident 
and reflected voltage pulses, and the voltage pulse at the end of the line itself with images of 
Scope display.  Identify in the pulse at the load a portion of a sinusoidal oscillation.  Determine 
the frequency of the oscillation.  Compare the observed frequency with the frequency calculated 
from the values of the capacitor and inductor. 
 
G. Unknown 
 
 Choose an unknown circuit and record its number.  Record the incident and reflected 
voltage pulses, and the voltage pulse at the end of the line itself with images of Scope display.    
The unknown contains two elements, one of which is a resistor. The elements may be in series or 
parallel.  In your report determine, with appropriate values, what is in your box.  During 
laboratory you may wish to speculate on what is inside and try to reproduce the appropriate wave 
shape from your known components and calculate both component values from your 
measurements. 
 
 
IX.  Report 
 
 In your report answer all the questions from the procedure part.  The report should 
include your Scope shots of waveforms and related calculations.  For the unknown components, 
show calculations to support your result.  
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Appendix I.  Characteristics of parallel conductor and coaxial transmission lines 
 
Type of Line 
 

Parallel conductor 
 

Coaxial conductor 
 

Quantity 
(units) 
 

Wire radii a 
Separation of centers d 

a << d 
 

Inner radius a 
Outer radius b 

 

Capacitance, C 
(farads per meter, F/m) 

  
ln   d

a

π ε  
2    
ln  b

a

π ε  

 
Inductance, L 
(henries per meter, H/m) 
 

ln d
a

µ
π

 

 

ln
2

b
a

µ
π

 

 

Velocity  = 1u
LC

=   

(meters per second, m/s) 
 

1
µε

 

 

1
µε

 

Characteristic Impedance 

k
LZ
C

=  

(ohms, Ω) 
 

1 ln d
a

µ
π ε

 

 

1 ln
2

b
a

µ
π ε

 

 

   
Constants for free space 
 

o

o

µ
ε

 = 120 π  Ω 

 

o o

1
µ ε

 = 83 10×  m/s 
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Appendix II.  Adjustment of the Scope probe 
 
 The input impedance of the Scope is not purely resistive.  Its input has a capacitive 
component of approximately 13 pF.  The Scope probe is an RC circuit, and the capacitor in this 
circuit can be adjusted so that the combination of the RC circuit at the input of the Scope and the 
RC circuit of the probe is frequency independent.  The figure below shows the RC circuit of the 
probe and the RC circuit of the Scope input.  With proper adjustment the Scope probe attenuates 
all frequencies by a factor of 10.  For this reason the probe is called a X10 probe.  The display 
can take into account this factor of 10 automatically if X10 probe is selected on the display 
menu. 

 
 
 The Scope has a square wave output on the front panel.  The Scope will display sharp 
edges when the probe is connected to this square wave, if the probe is properly adjusted.  A 
small screwdriver is needed to turn the adjustment screw on the variable capacitor in the probe.  
The probe must be properly adjusted or rise and fall time measurements in the laboratory 
exercises will be invalid. Techniue on probe compensation is shown (from Tektronix TDS3000 
series manual). 
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Appendix III  Production of pulses with a charged cable and switches 
 
 Suppose a section of line of length o  is isolated between two open switches as shown in 
Fig A1.  A battery of voltage oV  is connected to this isolated line through a high resistance HR , 
i.e. HR  >> kZ . 

 

 
 

Figure A1 
 
Consequently the voltage on the line, shown in Fig A1b, is zero beyond the switches and oV  

between them. The current on the line is everywhere zero, Fig A1c. 
 
 If the two switches are closed simultaneously, then the line becomes continuous and Eq. 
12 applies to it.  Just after the switches are closed, the voltage V on the line is the pulse shown in 
Fig A1b and the current is zero. 
 
Eq. 12 gives 
 
  r i oV V V+ =  

           (A1) 
  0i rV V− =  

 
Solution of Eq. A1 gives 
 
  2i oV V= , 2r oV V=       (A2) 
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Consequently the original static voltage distribution splits up into two pulses of one-half height 
travelling in opposite directions as shown in Fig A2. 
 

 
     Figure A2 
 
 It is obviously impossible to close two mechanical switches within a nanosecond of each 
other, although it could be done electronically. Using a pulse generator with a single switch 
isolating an open line of length o  (Fig A3a) will accomplish this. 

 
 In such a pulse generator a power supply is connected to it through a high resistance, so 
that the central wire on the charging cable is maintained at a potential oV  (Fig A3b).  When the 
switch is closed, the original static voltage distribution breaks up into two pulses of height 2oV . 

One travels to the right on the transmission line. The other "travels" to the left and is 
immediately reflected from the open end to follow the pulse going to the right. Thus a pulse of 
length 2 o and height 2oV  travels down the line (see Figs A3c, d, e). 

 
 A typical switch in such a pulse generator is opened and closed magnetically 60 times a 
second. The switch is a mercury wetted relay encapsulated in very high pressure hydrogen and 
should never be opened as a precaution against explosion.  The liquid mercury prevents contact 
bounce. The high pressure gas prevents arcing.  A typical pulser of this type is shown as an 
example in the lab. In this experiement, however, a modern 50 MHz  function generator will be 
used to produce positive or negative rectangular pulses. 
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Figure A3 

 


